Phytochemistry, 1972, Vol. 11, p. 2355. Pergamon Press. Printed in England.

LEGUMINOSAE

GIBBERELLIN A₁₈ AND A₂₃ FROM IMMATURE SEEDS OF WISTARIA FLORIBUNDA

KOICHI KOSHIMIZU, HIROO ISHII*, HIROSHI FUKUI and TETSUO MITSUI Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan

(Received 8 February 1972)

Key Word Index—Wistaria floribunda; Leguminosae; gibberellins A₁₈ and A₂₃.

Plant. Wistaria floribunda DC. Source. Nara Park, Nara, Japan, July 1967.† Previous work. The existence of gibberellin-like substances in the immature seeds.¹

Isolation and identification.‡ MeOH extracts obtained from the immature seeds (17 kg) were concentrated and the residue was partitioned between benzene and $\rm H_2O$ at pH 3. To the resulting aqueous layer, charcoal was added, and substances adsorbed eluted with 70% aq. acetone. Evaporation of the eluant gave a gum (140 g), which was purified by adsorption and partition chromatography to give two crystalline compounds, I and II.

Compound I (yield: $17\cdot3$ mg), colourless needles, m.p. $179-181^{\circ}$ (from H_2O), exhibited strong activity on the growth of rice seedlings. IR spectrum (KBr): 3500, 3350, 2800-2400 br, 1730-1690 br, 1660 sh. and 900 cm⁻¹. NMR spectrum (60 MHz, d_5 -pyridine): $1\cdot95\delta$ (3H, s), $3\cdot58\delta$ (1H, d, J=13 Hz), $3\cdot98\delta$ (1H, d, J=13 Hz), $4\cdot50\delta$ (1H, m), $5\cdot00\delta$ (1H, m) and $5\cdot57\delta$ (1H, m). Methylation of I gave a methyl ester, whose NMR spectrum (60 MHz, CDCl₃): $1\cdot21\delta$ (3H, s), $2\cdot06\delta$ (2H, br. s), $2\cdot76\delta$ (1H, d, $J=12\cdot5$ Hz), $3\cdot67\delta$ (3H, s), $3\cdot90\delta$ (1H, d, $J=12\cdot5$ Hz), $4\cdot11\delta$ (1H, m), $4\cdot95\delta$ (1H, m), $5\cdot18\delta$ (1H, m) and $9\cdot72\delta$ (1H, s). The data here reported were in full agreement with those known for $GA_{23}^{2\cdot3}$ and the identity was confirmed by comparison with an authentic sample (IR, NMR, co-TLC and m.m.p.).

Compound II (yield: 22·3 mg), colourless needles, m.p. 235–239° (from acetone) was less active than I. IR spectrum (KBr): 3340, 3260, 2800–2400 br, 1695 br and 908 cm⁻¹. NMR spectrum (60 MHz, d_5 -pyridine): 1·26 δ (3H, s), 2·00 δ (3H, s), 3·12 δ (1H, d, J=12 Hz), 4·26 δ (1H, d, J=12 Hz), 4·78 δ (1H, m), 5·04 δ (1H, m) and 5·53 δ (1H, m). The spectral evidence indicated compound II to be GA₁₈⁴ and the identity was confirmed by comparison with an authentic sample (IR, NMR, co-TLC and m.m.p.).

- * Present address: Research Laboratories, Dainippon Pharmaceutical Co. Ltd., Suita, Japan.
- † We wish to thank Nara Provincial Office for assistance of plant collections.
- [‡] The extraction and purification of gibberellins were guided by a gibberellin bioassay using rice seedlings. For more complete experimental details about gibberellin bioassay and isolation procedure, see Refs. 3 and 4.

- ² K. Koshimizu, H. Fukui, M. Inui, Y. Ogawa and T. Mitsui, Tetrahedron Letters 1143 (1968).
- ³ H. Fukui, H. Ishii, K. Koshimizu, M. Katsumi, Y. Ogawa and T. Mitsui, Agric. Biol. Chem. in press.
- ⁴ K. Koshimizu, H. Fukui, T. Kusaki, Y. Ogawa and T. Mitsui, Agric. Biol. Chem. 32,1135 (1968).

¹ H. Murakami, Bot. Mag. Tokyo 72, 36 (1959).